Overview

Namespaces

  • Chippyash
    • Math
      • Matrix
        • Attribute
        • Computation
          • Add
          • Div
          • Mul
          • Sub
        • Decomposition
        • Derivative
          • Strategy
            • Determinant
        • Exceptions
        • Formatter
          • DirectedGraph
        • Interfaces
        • Special
        • Traits
        • Transformation
          • Strategy
            • Invert

Classes

  • AbstractSpecial
  • Cauchy
  • Chebspsec
  • Functional
  • Identity
  • Ones
  • Zeros

Interfaces

  • SpecialMatrixInterface
  • Overview
  • Namespace
  • Class
  • Tree

Namespace Chippyash\Math\Matrix\Special

Classes summary
AbstractSpecial
Cauchy Cauchy Matrix
Chebspsec

Chebspec Matrix CHEBSPEC Chebyshev spectral differentiation matrix. C = CHEBSPEC(N, K) is a Chebyshev spectral differentiation matrix of order N. K = 0 (the default) or 1. For K = 0 (`no boundary conditions'), C is nilpotent, with C^N = 0 and it has the null vector ONES(N,1). C is similar to a Jordan block of size N with eigenvalue zero. For K = 1, C is nonsingular and well-conditioned, and its eigenvalues have negative real parts. For both K, the computed eigenvector matrix X from EIG is ill-conditioned (MESH(REAL(X)) is interesting).

Functional

Functional Matrix Create a matrix given a function for each row, column index Particularly useful when matrix content is a function of row,col index

Identity

Identity Matrix Create an Identity (a square matrix)

Ones

Ones Matrix Create a matrix or vector filled with 1

Zeros

Zeroes Matrix Create a matrix or vector filled with 0

Interfaces summary
SpecialMatrixInterface
Chippyash Math Matrix API documentation generated by ApiGen